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Abstract

Data Clustering in Life Sciences

Ying Zhao and George Karypis*

Clustering has a wide range of applications in life sciences and over the years has been used in many
areas ranging from the analysis of clinical information, phylogeny, genomics, and proteomics. The primary
goal of this article is to provide an overview of the various issues involved in clustering large biological
datasets, describe the merits and underlying assumptions of some of the commonly used clustering ap-
proaches, and provide insights on how to cluster datasets arising in various areas within life-sciences. We
also provide a brief introduction to CLUTO, a general purpose toolkit for clustering various datasets, with an
emphasis on its applications to problems and analysis requirements within life sciences.

Index Entries: Clustering algorithms; similarity between objects; microarray data; Cluto.

1. Introduction
Clustering is the task of organizing a set of

objects into meaningful groups. These groups
can be disjoint, overlapping, or organized in
some hierarchical fashion. The key element of
clustering is the notion that the discovered groups
are meaningful. This definition is intentionally
vague, as what constitutes meaningful is to a
large extent, application dependent. In some appli-
cations this may translate to groups in which the
pairwise similarity between their objects is maxi-
mized, and the pairwise similarity between objects
of different groups is minimized. In some other
applications this may translate to groups that con-
tain objects that share some key characteristics,
although their overall similarity is not the high-
est. Clustering is an exploratory tool for analyz-
ing large datasets, and has been used extensively
in numerous application areas.

Clustering has a wide range of applications in
life sciences and over the years has been used
in many areas ranging from the analysis of
clinical information, phylogeny, genomics, and

proteomics. For example, clustering algorithms ap-
plied to gene expression data can be used to iden-
tify co-regulated genes and provide a genetic
fingerprint for various diseases. Clustering algo-
rithms applied on the entire database of known
proteins can be used to automatically organize the
different proteins into close- and distant-related
families, and identify subsequences that are mostly
preserved across proteins (1–5). Similarly, clus-
tering algorithms applied to the tertiary structural
datasets can be used to perform a similar organi-
zation and provide insights in the rate of change
between sequence and structure (6,7).

The primary goal of this article is to provide an
overview of the various issues involved in cluster-
ing large datasets, describe the merits and under-
lying assumptions of some of the commonly used
clustering approaches, and provide insights on
how to cluster datasets arising in various areas
within life sciences. Toward this end, the article is
organized, broadly, in three parts. The first part
(see Headings 2. to 4.) describes the various types
of clustering algorithms developed over the years,
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the various methods for computing the similarity
between objects arising in life sciences, and meth-
ods for assessing the quality of the clusters. The
second part (see Heading 5.) focuses on the prob-
lem of clustering data arising from microarray
experiments and describes some of the commonly
used approaches. Finally, the third part (see
Heading 6.) provides a brief introduction to
Cluto, a general purpose toolkit for clustering
various datasets, with an emphasis on its applica-
tions to problems and analysis requirements
within life sciences.

2. Types of Clustering Algorithms

The topic of clustering has been extensively
studied in many scientific disciplines and a vari-
ety of different algorithms have been developed
(8–20). Two recent surveys on the topics (21,22)
offer a comprehensive summary of the different
applications and algorithms. These algorithms
can be categorized along different dimensions
based either on the underlying methodology of the
algorithm, leading to partitional or agglomerative
approaches; the structure of the final solution,
leading to hierarchical or nonhierarchical solu-
tions; the characteristics of the space in which they
operate, leading to feature or similarity approaches;
or the type of clusters that they discover, leading
to globular or transitive clustering methods.

2.1. Agglomerative and Partitional
Algorithms

Partitional algorithms, such as K-means (9,23),
K-medoids (9,11,13), probabilistic (10,24), graph-
partitioning based (9,25–27), or spectral based
(28), find the clusters by partitioning the entire
dataset into either a predetermined or an automati-
cally derived number of clusters.

Partitional clustering algorithms compute a k-way
clustering of a set of objects either directly or
through a sequence of repeated bisections. A direct
k-way clustering is commonly computed as fol-
lows. Initially, a set of k objects is selected from
the datasets to act as the seeds of the k clusters.
Then, for each object, its similarity to these k
seeds is computed, and it is assigned to the cluster
corresponding to its most similar seed. This forms

the initial k-way clustering. This clustering is then
repeatedly refined so that it optimizes a desired
clustering criterion function. A k-way partition-
ing through repeated bisections is obtained by
recursively applying the above algorithm to
compute two-way clustering (i.e., bisections). Ini-
tially, the objects are partitioned into two clus-
ters, then one of these clusters is selected and is
further bisected, and so on. This process contin-
ues k–1 times, leading to k clusters. Each of these
bisections is performed so that the resulting two-
way clustering solution optimizes a particular cri-
terion function.

Criterion functions used in the partitional clus-
tering reflect the underlying definition of the
“goodness” of clusters. The partitional clustering
can be considered as an optimization procedure
that tries to create high-quality clusters according
to a particular criterion function. Many criterion
functions have been proposed (9,29,30) and some
of them are described later in Heading 6. Criterion
functions measure various aspects of intracluster
similarity, intercluster dissimilarity, and their
combinations. These criterion functions use dif-
ferent views of the underlying collection, by either
modeling the objects as vectors in a high-dimen-
sional space or by modeling the collection as a
graph.

Hierarchical agglomerative algorithms find the
clusters by initially assigning each object to its
own cluster and then repeatedly merging pairs of
clusters until a certain stopping criterion is met.
Consider an n-object dataset and the clustering solu-
tion that has been computed after performing merg-
ing steps. This solution will contain exactly n–1
clusters, as each merging step reduces the num-
ber of clusters by one. Now, given this (n–1)-
way clustering solution, the pair of clusters that
is selected to be merged next is the one that leads
to an (n–l–1)-way solution that optimizes a par-
ticular criterion function. That is, each one of the
(n–1) × (n–l–1)/2 pairs of possible merges is
evaluated, and the one that leads to a clustering
solution that has the maximum (or minimum)
value of the particular criterion function is selected.
Thus, the criterion function is locally optimized
within each particular stage of agglomerative al-
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gorithms. Depending on the desired solution, this
process continues until either there are only clus-
ters left, or when the entire agglomerative tree
has been obtained.

The three basic criteria to determine which pair
of clusters to be merged next are single-link (31),
complete-link (32), and group average (UPGMA
[unweighted pair group method with arithmetic
mean]) (9). The single-link criterion function
measures the similarity of two clusters by the
maximum similarity between any pair of objects
from each cluster, whereas the complete-link crite-
rion uses the minimum similarity. In general, both
the single-link and the complete-link approaches
do not work very well because they either base
their decisions to a limited amount of information
(single-link) or assume that all the objects in the
cluster are very similar to each other (complete-
link). On the other hand, the group average approach
measures the similarity of two clusters by the aver-
age of the pairwise similarity of the objects from
each cluster and does not suffer from the prob-
lems arising with single-link and complete-link.
In addition to these three basic approaches, a
number of more sophisticated schemes have been
developed, such as CURE (18), ROCK (19), CHA-
MELEON (20), that have been shown to produce
superior results.

Finally, hierarchical algorithms produce a clus-
tering solution that forms a dendrogram, with a
single all-inclusive cluster at the top and single-point
clusters at the leaves. In contrast, in nonhierarchical
algorithms there tends to be no relation between
the clustering solutions produced at different lev-
els of granularity.

2.2. Feature-Based and Similarity-Based
Clustering Algorithms

Another distinction between the different clus-
tering algorithms is whether or not they operate
on the object’s feature space or operate on a derived
similarity (or distance) space. K-means–based algo-
rithms are the prototypical examples of methods
that operate on the original feature space. In this
class of algorithms, each object is represented as
a multidimensional feature vector, and the clus-
tering solution is obtained by iteratively optimiz-

ing the similarity (or distance) between each ob-
ject and its cluster centroid. On the other hand,
similarity-based algorithms compute the cluster-
ing solution by first computing the pairwise simi-
larities between all the objects and then use these
similarities to drive the overall clustering solu-
tion. Hierarchical agglomerative schemes, graph-
based schemes, as well as K-medoid, fall into this
category. The advantages of similarity-based
methods is that they can be used to cluster a wide
variety of datasets, provided that reasonable
methods exist for computing the pairwise simi-
larity between objects. For this reason, they have
been used to cluster both sequential (1,2) as well
as graph datasets (33,34), especially in biological
applications. On the other hand, there has been
limited work in developing clustering algorithms
that operate directly on the sequence or graph
datasets (35).

However, similarity-based approaches have
two key limitations. First, their computational
requirements are high as they need to compute
the pairwise similarity between all the objects that
need to be clustered. As a result, such algorithms
can only be applied to relatively small datasets (a
few thousand objects), and they cannot be effec-
tively used to cluster the datasets arising in many
fields within life sciences. The second limitation
of these approaches is that by not using the
object’s feature space and relying only on the
pairwise similarities, they tend to produce subop-
timal clustering solutions, especially when the
similarities are low relative to the cluster sizes.
The key reason for this is that these algorithms
can only determine the overall similarity of a col-
lection of objects (i.e., a cluster) by using mea-
sures derived from the pairwise similarities (e.g.,
average, median, or minimum pairwise similari-
ties). However, such measures, unless the overall
similarity between the members of different clus-
ters is high, are quite unreliable as they cannot
capture what is common between the different
objects in the collection.

Clustering algorithms that operate in the object’s
feature space can overcome both of these limita-
tions. Because they do not require the precompu-
tation of the pairwise similarities, fast partitional
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algorithms can be used to find the clusters, and
because their clustering decisions are made in the
object’s feature space, they can potentially lead
to better clusters by correctly evaluating the simi-
larity between a collection of objects. For example,
in the context of clustering protein sequences, the
proteins in each cluster can be analyzed to deter-
mine the conserved blocks, and use only these
blocks in computing the similarity between the
sequences (an idea formalized by profile HMM
approaches; 36,37). Recent studies in the context
of clustering large high-dimensional datasets
done by various groups (38–41) show the advan-
tages of such algorithms over those based on simi-
larity.

2.3. Globular and Transitive Clustering
Algorithms

Besides the operational differences between
various clustering algorithms, another key dis-
tinction between them is the type of clusters that
they discover. There are two general types of clus-
ters that often arise in different application domains.
What differentiates these types is the relationship
between the cluster’s objects and the dimensions
of their feature space.

The first type of clusters contains objects that
exhibit a strong pattern of conservation along a
subset of their dimensions. That is, there is a sub-
set of the original dimensions in which a large
fraction of the objects agree. For example, if the
dimensions correspond to different protein motifs,
then a collection of proteins will form a cluster, if
there exists a subset of motifs that is present in a
large fraction of the proteins. This subset of dimen-
sions is often referred to as a subspace, and the
above stated property can be viewed as the cluster’s
objects and its associated dimensions forming a
dense subspace. Of course, the number of dimen-
sions in these dense subspaces, and the density
(i.e., how large is the fraction of the objects that
share the same dimensions) will be different from
cluster to cluster. Exactly what is this variation in
subspace size and density (and the fact that an
object can be part of multiple disjoint or overlap-
ping dense subspaces) is what complicates the
problem of discovering this type of clusters. There

are a number of application areas in which such
clusters give rise to meaningful groupings of the
objects (i.e., domain experts will tend to agree that
the clusters are correct). Such areas includes clus-
tering documents based on the terms they contain,
clustering customers based on the products they
purchase, clustering genes based on their expres-
sion levels, and clustering proteins based on the
motifs they contain.

The second type of clusters contains objects in
which again there exists a subspace associated
with that cluster. However, unlike the earlier case,
in these clusters there will be subclusters that
may share a very small number of the subspace’s
dimension, but there will be a strong path within
that cluster that will connect them. By “strong
path” we mean that if A and B are two subclusters
that share only a few dimensions, then there
will be another set of subclusters X1,X2,...,Xk,
that belong to the cluster, such that each of the
subcluster pairs (A,X1), (X1,X2),...,(Xk,B) will
share many of the subspace’s dimensions. What
complicates cluster discovery in this setting is that
the connections (i.e., shared subspace dimen-
sions) between subclusters within a particular clus-
ter will tend to be of different strength. Examples
of this type of clusters include protein clusters
with distant homologies or clusters of points that
form spatially contiguous regions.

Our discussion so far focused on the relation-
ship between the objects and their feature space.
However, these two classes of clusters can also
be understood in terms of the object-to-object
similarity graph. The first type of clusters will
tend to contain objects in which the similarity
between all pairs of objects will be high. On the
other hand, in the second type of clusters there
will be a lot of objects whose direct pairwise simi-
larity will be quite low, but these objects will be
connected by many paths that stay within the clus-
ter that traverse high similarity edges. The names
of these two cluster types were inspired by this
similarity-based view, and they are referred to as
globular and transitive clusters, respectively.

The various clustering algorithms are in gen-
eral suited for finding either globular or transitive
clusters. In general, clustering criterion-driven
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partitional clustering algorithms such as K-means
and its variants and agglomerative algorithms
using the complete-link or the group-average
method are suited for finding globular clusters.
On the other hand, the single-link method of the
agglomerative algorithm and graph-partitioning-
based clustering algorithms that operate on a near-
est neighbor similarity graph are suited for finding
transitive clusters. Finally, specialized algo-
rithms, called subspace clustering methods, have
been developed to explicitly find either globular
or transitive clusters by operating directly in the
object’s feature space (42–44).

3. Methods for Measuring the Similarity
Between Objects

In general, the method used to compute the
similarity between two objects depends on two
factors. The first factor has to do with how the
objects are actually being represented. For example,
the similarity between two objects represented
by a set of attribute-value pairs will be entirely
different from the method used to compute the
similarity between two DNA sequences and
two three-dimensional protein structures. The
second factor is much more subjective and has to
do with the actual goal of clustering. Different
analysis requirements may give rise to entirely
different similarity measures and different clus-
tering solutions. This section focuses on discuss-
ing various methods for computing the similarity
between objects that address both of these factors.

The diverse nature of biological sciences and
the shear complexity of the underlying physico-
chemical and evolutionary principles that need to
be modeled, gives rise to numerous clustering
problems involving a wide range of different
objects. The most prominent of them are the
following:

Multidimensional Vectors: Each object is
represented by a set of attribute-value pairs.
The meaning of the attributes (also referred to
as variables or features) is application depen-
dent and includes datasets like those arising
from various measurements (e.g., gene expres-
sion data), or from various clinical sources
(e.g., drug response, disease states).

Sequences: Each object is represented as a se-
quence of symbols or events. The meaning of
these symbols or events also depends on the
underlying application and includes objects,
such as DNA and protein sequences, sequences
of secondary structure elements, temporal mea-
surements of various quantities, such as gene
expressions, and historical observations of dis-
ease states.
Structures: Each object is represented as a
two- or three-dimensional structure. The pri-
mary examples of such datasets include the spa-
tial distribution of various quantities of interest
within various cells, and the three-dimensional
geometry of chemical molecules such as enzymes
and proteins.

The rest of this section describes some of the
most popular methods for computing the similar-
ity for all these types of objects.

3.1. Similarity Between Multidimensional
Objects

There are a variety of methods for computing
the similarity between two objects that are repre-
sented by a set of attribute-value pairs. These
methods, to a large extent, depend on the nature
of the attributes themselves and the characteris-
tics of the objects that we need to model by the
similarity function.

From the point of similarity calculations, there
are two general types of attributes. The first one
consists of attributes whose range of values is
continuous. This includes both integer-valued and
real-valued variables, as well as attributes whose
allowed set of values are thought to be part of an
ordered set. Examples of such attributes include
gene expression measurements, ages, disease sever-
ity levels. On the other hand, the second type con-
sists of attributes that take values from an unordered
set. Examples of such attributes include various
gender, blood type, and tissue type. We will refer
to the first type as continuous attributes and to the
second type as categorical attributes. The primary
difference between these two types of attributes
is that in the case of continuous attributes, when
there is a mismatch on the value taken by a par-
ticular attribute in two different objects, the dif-
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ference of the two values is a meaningful mea-
sure of distance, whereas in categorical attributes,
there is no easy way to assign a distance between
such mismatches.

In the rest of this section, we present methods
for computing the similarity assuming that all the
attributes in the objects are either continuous or
categorical. However, in most real applications,
objects will be represented by a mixture of such
attributes, therefore the described approaches
need to be combined.

3.1.1. Continuous Attributes
When all the attributes are continuous, each

object can be considered to be a vector in the
attribute space. That is, if n is the total number of
attributes, then each object v can be represented
by an n-dimensional vector (v1,v2,...,vn), where vi
is the value of the ith attribute.

Given any two objects with their correspond-
ing vector–space representations v and u, a widely
used method for computing the similarity between
them is to look at their distance as measured by
some norm of their vector difference. That is,

disr (v,u) = �v – u �r (1)

where r is the norm used, and �·� is used to denote
vector norms. If the distance is small, then the ob-
jects will be similar, and the similarity of the objects
will decrease as their distance increases.

The two most commonly used norms are the
one-norm and the two-norm. In the case of the
one-norm, the distance between two objects is
give by

(2)

where �·� denotes absolute values. Similarly, in the
case of the two-norm, the distance is given by

(3)

Note that the one-norm distance is also called
the Manhattan distance, whereas the two-norm
distance is nothing more than the Euclidean dis-
tance between the vectors. Those distances may
become problematic when clustering high-dimen-
sional data, because in such datasets, the similar-

ity between two objects is often defined along a
small subset of dimensions.

An alternate way of measuring the similarity
between two objects in the vector–space model is
to look at the angle between their vectors. If two
objects have vectors that point to the same direc-
tion (i.e., their angle is small), then these objects
will be considered similar, and if their vectors
point to different directions (i.e., their angle is
large), then these vectors will be considered dis-
similar. This angle-based approach for comput-
ing the similarity between two objects emphasizes
the relative values that each dimension takes
within each vector, and not their overall length.
That is, two objects can have an angle of zero (i.e.,
point to the identical direction), even if their Euclid-
ean distance is arbitrarily large. For example, in a
two-dimensional space, the vectors v = (1,1), and
u = (1000,1000) will be considered to be identi-
cal, as their angle is zero. However, their Euclid-
ean distance is close to             .

Because the computation of the angle between
two vectors is somewhat expensive (requiring
inverse trigonometric functions), we do not mea-
sure the angle itself but its cosine function. The
cosine of the angle between two vectors v and u is
given by

(4)

This measure will be plus one, if the angle be-
tween v and u is zero, and minus one, if their angle
is 180 degrees (i.e., point to opposite directions).
Note that a surrogate for the angle between two
vectors can also be computed using the Euclidean
distance, but instead of computing the distance
between v and u directly, we need to first scale
them to be of unit length. In that case, the Euclid-
ean distance measures the chord between the two
vectors in the unit hypersphere.

In addition to the above linear algebra inspired
methods, another widely used scheme for deter-
mining the similarity between two vectors uses
the Pearson correlation coefficient, which is given
by

(5)
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where     and      are the mean of the values of the
v and u vectors, respectively. Note that Pearson’s
correlation coefficient is nothing more than the
cosine between the mean-subtracted v and u vec-
tors. As a result, it does not depend on the length
of the               and                vectors, but only on their
angle.

Our discussion so far on similarity measures
for continuous attributes focused on objects in
which all the attributes were homogeneous in na-
ture. A set of attributes are called homogeneous if
all of them measure quantities that are of the same
type. As a result changes in the values of these
variables can be easily correlated across them.
Quite often, each object will be represented by a
set of inhomogeneous attributes. For example, if
we would like to cluster patients, then some of
the attributes describing each patient can measure
things like age, weight, height, calorie intake. If
we use some of these methods to compute the
similarity, we will essentially make the assump-
tion that equal magnitude changes in all variables
are identical. However, this may not be the case.
If the age of two patients is 50 yr, that represents
something that is significantly different if their
calorie intake difference is 50 cal. To address
these problems, the various attributes need to be
first normalized before using any of these simi-
larity measures. Of course, the specific normal-
ization method is attribute dependent, but its goal
should be to make differences across different at-
tributes comparable.

3.1.2. Categorical Attributes
If the attributes are categorical, special similar-

ity measures are required, as distances between
their values cannot be defined in an obvious man-
ner. The most straightforward way is to treat each
categorical attribute individually and define the
similarity based on whether two objects contain
the exact same value for each categorical at-
tribute. Huang (45) formalized this idea by intro-
ducing dissimilarity measures between objects
with categorical attributes that can be used in any
clustering algorithms. Let X and Y be two objects
with m categorical attributes, and Xi and Yi be the
values of the ith attribute of the two objects, the

dissimilarity measure between X and Y is defined
to be the number of mismatching attributes of the
two objects. That is,

where

A normalized variant of the above dissimilar-
ity is defined as follows

where nXi(nYi) is the number of times the value Xi
(Yi) appears in the ith attribute of the entire
dataset. If two categorical values are common
across the dataset, they will have low weights, so
that the mismatch between them will not contrib-
ute significantly to the final dissimilarity score. If
two categorical values are rare in the dataset, then
they are more informative and will receive higher
weights according to the formula. Hence, this dis-
similarity measure emphasizes the mismatches
that happen for rare categorical values than for
those involving common ones.

One of the limitations of the preceding method
is that two values can contribute to the overall
similarity only if they are the same. However, dif-
ferent categorical values may contain useful in-
formation in the sense that even if their values are
different, the objects containing those values are
related to some extent. By defining similarities
just based on matches and mismatches of values,
some useful information may be lost. A number
of approaches have been proposed to overcome
this limitation (19,46–48) by using additional in-
formation between categories or relationships be-
tween categorical values.

3.2. Similarity Between Sequences
One of the most important applications of clus-

tering in life sciences is clustering sequences, for
example, DNA or protein sequences. Many clus-
tering algorithms have been proposed to enhance
sequence database searching, organize sequence
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databases, generate phylogenetic trees, or guide
multiple sequence alignment. In this specific clus-
tering problem, the objects of interest are biologi-
cal sequences, which consist of a sequence of
symbols, which could be nucleotides, amino acids,
or secondary structure elements (SSEs). Biologi-
cal sequences are different from the objects we
have discussed so far, in the sense that they are
not defined by a collection of attributes. Hence,
the similarity measures we discussed so far are
not applicable to biological sequences.

Over the years, a number of different approaches
have been developed for computing similarity
between two sequences (49). The most common
ones are the alignment-based measures, which
first compute an optimal alignment between two
sequences (either globally or locally), and then
determine their similarity by measuring the degree
of agreement in the aligned positions of the two
sequences. The aligned positions are usually
scored using a symbol-to-symbol scoring matrix,
and in the case of protein sequences, the most
commonly used scoring matrices are PAM (50,51)
or BLOSUM (52).

The global sequence alignment (Needleman-
Wunsch alignment; 53) aligns the entire sequences
using dynamic programming. The recurrence re-
lations are the following (49). Given two se-
quences S1 of length n and S2 of length m, and a
scoring matrix S, let score(i, j) be the of the optimal
alignment of prefixes and S1[1...i] and S2[1...j].

The base conditions are

and

Then, the general recurrence is

where ‘_’ represents a space, S is the scoring
matrix to specify the matching score for each
pair of symbols, and score(n,m) is the optimal
alignment score.

These global similarity scores are meaningful
when we compare similar sequences with roughly
the same length (e.g., protein sequences from the
same protein family). However, when sequences
are of different lengths and are quite divergent,
the alignment of the entire sequences may not
make sense, in which case, the similarity is com-
monly defined on the conserved subsequences.
This problem is referred to as the local alignment
problem, which seeks to find the pair of substrings
of the two sequences that has the highest global
alignment score among all possible pairs of sub-
strings. Local alignments can be computed opti-
mally via a dynamic programming algorithm,
originally introduced by Smith and Waterman
(54). The base conditions are score(0,j) = 0 and
score(i,0) = 0, and the general recurrence is given
by

The local sequence alignment score corre-
sponds to the cells of the dynamic programming
table that have the highest value. Note that the
recurrence for local alignments is very similar to
that for global alignments only with minor changes,
which allow the alignment to begin from any loca-
tion (i, j) (49).

Alternatively, local alignments can be com-
puted approximately via heuristic approaches,
such as FASTA (55,56) or BLAST (57). The heu-
ristic approaches achieve low time complexities
by first identifying promising locations in an effi-
cient way, and then applying a more expensive
method on those locations to construct the final
local sequence alignment. The heuristic approaches
are widely used for searching protein databases
because of their low time complexity. Descrip-
tion of these algorithms is beyond the scope of
this article, and the interested reader should fol-
low the references.

Most existing protein clustering algorithms use
the similarity measure based on the local align-
ment methods (i.e., Smith-Waterman, BLAST
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and FASTA [GeneRage; 2, ProtoMap 58]). These
clustering algorithms first obtain the pairwise
similarity scores of all pairs of sequences. Then
they either normalize the scores by the self-simi-
larity scores of the sequences to obtain a percent-
age value of identicalness (59), or transform the
scores to binary values based on a particular
threshold (2). Other methods normalize the row
similarity scores by taking into account other
sequences in the dataset. For example, ProtoMage
(58) first generates the distribution of the pairwise
similarities between sequence A and the other
sequences in the database. Then the similarity
between sequence A and sequence B is defined as
the expected value of the similarity score found
for A and B, based on the overall distribution. A
low expected value indicates a significant and
strong connection (similarity).

3.3. Similarity Between Structures

Methods for computing the similarity between
the three-dimensional structures of two proteins
(or other molecules) are intrinsically different
from any of the approaches that we have seen so
far for comparing multidimensional objects and
sequences. Moreover, unlike the previous data
types for which there are well-developed and
widely accepted methods for measuring similari-
ties, the methods for comparing three-dimen-
sional structures are still evolving, and the entire
field is an active research area. Providing a com-
prehensive description of the various methods for
computing the similarity between two structures
requires a chapter (or a book) of its own, and is
far beyond the scope of this article. For this rea-
son, our discussion in the rest of this section will
primarily focus on presenting some of the issues
involved in comparing three-dimensional struc-
tures, in the context of proteins, and outlining
some of the approaches that have been proposed
for solving them. The reader should refer to the
chapter by Johnson and Lehtonen (60) that pro-
vide an excellent introduction on the topic.

The general approach, which almost all meth-
ods for computing the similarity between a pair
of three-dimensional protein structures follow, is

to try to superimpose the structure of one protein
on top of the structure of the other protein, so that
certain key features are mapped very close to each
other in space. Once this is done, then the similar-
ity between two structures is computed by mea-
suring the fit of the superposition. This fit is
commonly computed as the root mean square de-
viations (RMSD) of the corresponding features.
To some extent, this is similar in nature to the
alignment performed for sequence-based similar-
ity approaches, but it is significantly more compli-
cated as it involves three-dimensional structures
with substantially more degrees of freedom.
There are a number of different variations for per-
forming this superposition that have to do with
(1) the features of the two proteins that are sought
to be matched, (2) whether or not the proteins are
treated as rigid or flexible bodies, (3) how the
equivalent set of features from the two proteins
are determined, and (4) the type of superposition
that is computed.

In principle, when comparing two protein
structures we can treat every atom of each amino
acid side chain as a feature and try to compute a
superposition that matches all of them as well as
possible. However, this usually does not lead to
good results because the side chains of different
residues will have different number of atoms with
different geometries. Moreover, even the same
amino acid types may have side chains with dif-
ferent conformations, depending on their environ-
ment. As a result, even if two proteins have very
similar backbones, a superposition computed by
looking at all the atoms may fail to identify this
similarity. For this reason, most approaches try to
superimpose two protein structures by focusing
on the Ca atoms of their backbones, whose loca-
tions are less sensitive on the actual residue type.
Besides these atom-level approaches, other meth-
ods focus on SSEs and superimpose two proteins
so that their SSEs are geometrically aligned with
each other.

Most approaches for computing the similarity
between two structures treat them as rigid bodies,
and try to find the appropriate geometric transfor-
mation (i.e., rotation and translation) that leads to
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the best superposition. Rigid-body geometric
transformations are well-understood and they are
relatively easy to compute efficiently. However,
by treating proteins as rigid bodies we may get
poor superpositions when the protein structures
are significantly different, although they are part
of the same fold. In such cases, allowing some
degree of flexibility tends to produce better results,
but also increases the complexity. In trying to find
the best way to superimpose one structure on top
of the other in addition to the features of interest
we must identify the pairs of features from the
two structures that will be mapped against each
other. There are two general approaches for doing
that. The first approach relies on an initial set of
equivalent features (e.g., Ca atoms or SSEs) being
provided by domain experts. This initial set is used
to compute an initial superposition and then addi-
tional features are identified using various ap-
proaches based on dynamic programming or
graph theory (53,61,62). The second approach
tries to automatically identify the correspondence
between the various features by various methods
including structural comparisons based on match-
ing Ca-atoms contact maps (63), or on the optimal
alignment of SSEs (64).

Finally, as it was the case with sequence align-
ment, the superposition of three-dimensional
structures can be done globally, whose goal is to
superimpose the entire protein structure, or locally,
which seeks to compute a good superposition
involving a subsequence of the protein.

4. Assessing Cluster Quality
Clustering results are hard to evaluate, espe-

cially for high-dimensional data and without a
prior knowledge of the objects’ distribution,
which is quite common in practical cases. How-
ever, assessing the quality of the resulting clus-
ters is as important as generating the clusters.
Given the same dataset, different clustering algo-
rithms with various parameters or initial conditions
will give very different clusters. It is essential to
know whether the resulting clusters are valid and
how to compare the quality of the clustering results,
so that the right clustering algorithm can be chosen
and the best clustering results can be used for fur-
ther analysis.

Another related problem is answering the ques-
tion, how many clusters are there in the dataset?
An ideal clustering algorithm should be the one
that can automatically discover the natural clus-
ters present in the dataset based on the underlying
cluster definition. However, there are no such uni-
versal cluster definitions and clustering algo-
rithms suitable for all kinds of datasets. As a
result, most existing algorithms require either the
number of clusters to be provided as a parameter
as it is done in the case of K-means, or a similar-
ity threshold that will be used to terminate the
merging process in the case of agglomerative
clustering. However, in general, it is hard to know
the right number of clusters or the right similarity
threshold without a prior knowledge of the dataset.

One possible way to automatically determine
the number of clusters k is to compute various
clustering solutions for a range of values of k,
score the resulting clusters based on some par-
ticular metric and then select the solution that
achieves the best score. A critical component of
this approach is the method used to measure the
quality of the cluster. To solve this problem,
numerous approaches have been proposed in a
number of different disciplines including pattern
recognition, statistics, and data mining. The major-
ity of them can be classified into two groups: exter-
nal quality measures and internal quality measures.

The approaches based on external quality mea-
sures require a priori knowledge of the natural
clusters that exist in the dataset, and validate a
clustering result by measuring the agreement
between the discovered clusters and the known
information. For instance, when clustering gene
expression data, the known functional categori-
zation of the genes can be treated as the natural
clusters, and the resulting clustering solution will
be considered correct if it leads to clusters that
preserve this categorization. A key aspect of the
external quality measures is that they use infor-
mation other than that used by the clustering algo-
rithms. However, such reliable a priori knowledge
is usually not available when analyzing real
datasets—after all, clustering is used as a tool to
discover such knowledge in the first place.



Data Clustering 11

MOLECULAR BIOTECHNOLOGY Volume 31, 2005

Job: Molecular Biotechnology Operator: SV
Chapter: Karypis/MB05-0033 Date: 6/05
Pub Date: 2005 Revision: 1st Pass

The basic idea behind internal quality measures
is rooted from the definition of clusters. A mean-
ingful clustering solution should group objects
into various clusters, so that the objects within
each cluster are more similar to each other than
the objects from different clusters. Therefore,
most of the internal quality measures evaluate
the clustering solution by looking at how similar
the objects are within each cluster and how well
the objects of different clusters are separated. For
example, the pseudo F statistic suggested by
Calinski and Harabasz (65) uses the quotient
between the intracluster average squared distance
and intercluster average squared distance. If we
have X as the centroid (i.e., mean vector) of all
the objects, Xj as the centroid of the objects in
cluster Cj, k as the total number of clusters, Xj as
the total number of objects, and as the squared
Euclidean distance between two object-vectors x
and y, then the pseudo F statistic is defined as fol-
lows:

One of the limitations of the internal quality
measures is that they often use the same informa-
tion both in discovering and in evaluating the
clusters. Recall from Heading 2. that some clus-
tering algorithms produce clustering results by
optimizing various clustering criterion functions.
If the same criterion functions were used as the
internal quality measure, then the overall cluster-
ing assessment process does nothing more than
assessing how effective the clustering algorithms
was in optimizing the particular criterion func-
tion, and provides no independent confirmation
about the degree to which the clusters are mean-
ingful.

An alternative way for validating the cluster-
ing results is to see how stable they are when add-
ing noise to the data, or subsampling it (66). This
approach performs a sequence of subsamplings of
the dataset and uses the same clustering proce-
dure to produce clustering solutions for various

subsamples. These various clustering results are
then compared to see the degree to which they
agree. The stable clustering solution should be the
one that gives similar clustering results across
the different subsamples. This approach can also
be easily used to determine the correct number of
clusters in hierarchical clustering solutions. The
stability test of clustering is performed at each
level of the hierarchical tree, and the number of
clusters k will be the largest k value that still can
produce stable clustering results.

Finally, a recent approach, with applications to
clustering gene expression datasets, assesses the
clustering results of gene expression data by look-
ing at the predictive power for one experimental
condition from the clustering results based on the
other experimental conditions (67). The key idea
behind this approach is that if one condition is left
out, then the clusters generated from the remain-
ing conditions should exhibit lower variation in
the left-out condition than randomly formed clus-
ters. Yeung et al. (67) defined the figure of merit
(FOM) to be the summation of intracluster vari-
ance for each one of the clustering instances in
which one of the conditions was not used during
cluster (i.e., left-out condition). Among the vari-
ous clustering solutions, they prefer the one that
exhibits the least variation, and their experi-
ments showed that in the context of clustering
gene expression data, this method works quite
well. The limitation of this approach is that it is
not applicable to dataset in which all the attributes
are independent. Moreover, this approach is only
applicable to low dimensional datasets, as com-
puting the intracluster variance for each dimen-
sion is quite expensive when the number of
dimensions is very large.

5. Case Study: Clustering Gene Expression
Data

Recently developed methods for monitoring
genomewide mRNA expression changes such as
oligonucleotide chips (68) and cDNA microarrays
(69), are especially powerful as they allow us to
quickly and inexpensively monitor the expression
levels of a large number of genes at different time
points, for different conditions, tissues, and organ-
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isms. Knowing when and under what conditions
a gene or a set of genes is expressed often pro-
vides strong clues as to their biological role and
function.

Clustering algorithms are used as an essential
tool to analyze these datasets and provide valu-
able insight on various aspects of the genetic
machinery. There are four distinct classes of clus-
tering problems that can be formulated from the
gene expression datasets, each addressing a dif-
ferent biological problem. The first problem focuses
on finding co-regulated genes by grouping together
genes that have similar expression profiles. These
co-regulated genes can be used to identify pro-
moter elements by finding conserved areas in their
upstream regions. The second problem focuses on
finding distinctive tissue types by grouping together
tissues whose genes have similar expression pro-
files. These tissue groups can then be further ana-
lyzed to identify the genes that best distinguish
the various tissues. The third clustering problem
focuses on finding common inducers by grouping
together conditions for which the expression pro-
files of the genes are similar. Finding such groups
of common inducers will allow us to substitute
different “trigger” mechanisms that still elicit the
same response (e.g., similar drugs, or similar her-
bicides or pesticides). Finally, the fourth cluster-
ing problem focuses on finding organisms that
exhibit similar responses over a specified set of
tested conditions, by grouping together organisms
for which the expression profiles of their genes
(in an ortholog sense) are similar. This would
allow us to identify organisms with similar re-
sponses to chosen conditions (e.g., microbes that
share a pathway).

In the rest of this subheading we briefly review
the approaches behind cDNA and oligonucleotide
microarrays, and discuss various issues related to
clustering such gene expression datasets.

5.1. Overview of Microarray Technologies
DNA microarrays measure gene expression

levels by exploiting the preferential binding of
complementary, single-stranded nucleic acid
sequences. cDNA microarrays, developed at
Stanford University, are glass slides, to which

single-stranded DNA molecules are attached at
fixed locations (spots) by high-speed robotic
printing (70). Each array may contain tens of
thousands of spots, each of which corresponds to
a single gene. mRNA from the sample and from
control cells is extracted and cDNA is prepared
by reverse transcription. Then, cDNA is labeled
with two fluorescent dyes and washed over the
microarray so that cDNA sequences from both
populations hybridize to their complementary
sequences in the spots. The amount of cDNA
from both populations bound to a spot can be
measured by the level of fluorescence emitted
from each dye. For example, the sample cDNA is
labeled with a red dye and the control cDNA is
labeled with a green dye. Then, if the mRNA from
the sample population is in abundance, the spot
will be red; if the mRNA from the control popula-
tion is in abundance, it will be green; if sample
and control bind equally the spot will be yellow;
if neither binds, it will appear black. Thus, the
relative expression levels of the genes in the
sample and control populations can be estimated
from the fluorescent intensities and colors for
each spot. After transforming the raw images pro-
duced by microarrays into relative fluorescent in-
tensity with some image processing software, the
gene expression levels are estimated as log-ratios
of the relative intensities. A gene expression matrix
can be formed by combining multiple microarray
experiments of the same set of genes but under
different conditions, where each row corresponds
to a gene and each column corresponds to a con-
dition (i.e., a microarray experiment) (70).

The Affymetrix GeneChip oligonucleotide
array contains several thousand single-stranded
DNA oligonucleotide probe pairs. Each probe
pair consists of an element containing oligonucle-
otides that perfectly match the target (PM probe)
and an element containing oligonucleotides with
a single base mismatch (MM probe). A probe set
consists of a set of probe pairs corresponding to a
target gene. Similarly, the labeled RNA is extracted
from sample cell and hybridizes to its complemen-
tary sequence. The expression level is measured
by determining the difference between the PM
and MM probes. Then, for each gene (i.e., probe
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set) average difference or log average can be cal-
culated, where average difference is defined as the
average difference between the PM and MM of
every probe pair in a probe set and log average is
defined as the average log ratios of the PM/MM
intensities for each probe pair in a probe set.

5.2. Data Preparation and Normalization
Many sources of systematic variation may

affect the measured gene expression levels in
microarray experiments (71). For the GeneChip
experiments, scaling/normalization must be per-
formed for each experiment before combining
them together, so that they can have the same Tar-
get Intensity (TGT). The scaling factor of each
experiment is determined by the array intensity of
the experiment and the common TGT, where the
array intensity is a composite of the average dif-
ference intensities across the entire array.

For cDNA microarray experiments, two fluo-
rescent dyes are involved and cause more system-
atic variation, which makes normalization more
important. In particular, this variation could be
caused by differences in RNA amounts, differ-
ences in labeling efficiency between the two fluo-
rescent dyes, and image acquisition parameters.
Such biases can be removed by a constant adjust-
ment to each experiment to force the distribution
of the log-ratios to have a median of zero. Because
an experiment corresponds to one column in the
gene expression array, this global normalization
can be done by subtracting the mean/median of
the gene expression levels of one experiment from
the original values, so that the mean value for this
experiment (column) is zero.

However, there are other sources of systematic
variation that global normalization may not be
able to correct. Yang et al. (71) pointed out that
dye biases can depend on spot overall intensity
and location on the array. Given the red and green
fluorescence intensities (R, G) of all the spots
in one slide, they plotted the log intensity ratio M
= logR/G vs the mean log-intensity                    ,
which shows clear dependence of the log ratio M
on overall spot intensity A. Hence, an intensity-
related normalization was proposed, where the
original log-ratio is subtracted by C(A). C(A) is a

scatter-plot smoother fit to the M vs A plot using
robust locally linear fits.

5.3. Similarity Measures
In most microarray clustering applications our

goal is to find clusters of genes or clusters of con-
ditions. A number of different methods have been
proposed for computing these similarities, includ-
ing Euclidean distance-based similarities, corre-
lation coefficients, and mutual information.

The use of correlation coefficient-based simi-
larities is primarily motivated by the fact that
while clustering gene expression datasets we are
interested on how the expression levels of differ-
ent genes are related under various conditions.
The correlation coefficient values between genes
(Eq. 5) can be used directly or transformed to abso-
lute values if genes of both positive and negative
correlations are important in the application.

An alternate way of measuring the similarity is
to use the mutual information between a pair of
genes. The mutual information between two infor-
mation sources A and B represent how much infor-
mation the two sources contain for each other.
D’Haeseleer et al. (72) used mutual information
to define the relationship between two conditions
A and B. This was done by initially discretizing
the gene expression levels into various bins, and
using this discretization to compute the Shannon
entropy of conditions A and B as follows

where pi is the frequency of each bin. Given these
entropy values, then the mutual information be-
tween A and B is defined as

A feature common to many similarity measures
used for microarray data is that they almost never
consider the length of the corresponding gene or
condition vectors, which is the actual value of the
differential expression level, but focus only on
various measures of relative change or how these
relative measures are correlated between two
genes or conditions (67,73,74). The reason for this
is twofold. First, there is still significant experi-
mental errors in measuring the expression level
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of a gene, and is not reliable to use it “as is.” Sec-
ond, in most cases we are only interested on how
the different genes change across the different
conditions (i.e., either upregulated or downregu-
lated) and we are not interested in the exact
amount of this change.

5.4. Clustering Approaches for Gene
Expression Data

Since the early days of the development of the
microarray technologies, a wide range of existing
clustering algorithms have been used, and novel
new approaches have been developed for cluster-
ing gene expression datasets. The most effective
traditional clustering algorithms are based either on
the group-average variation of the agglomerative
clustering methodology, or the K-means approach
applied to unit-length gene or condition expres-
sion vectors. Unlike other applications of cluster-
ing in life sciences, such as the construction of
phylogenetic trees, or guide trees for multiple
sequence alignment, there is no biological rea-
son that justifies that the structure of the correct
clustering solution is in the form of a tree. Thus,
agglomerative solutions are inherently subopti-
mal when compared to partitional approaches,
which allow for a wider range of feasible solu-
tions at various levels of cluster granularity. How-
ever, despite this, the agglomerative solutions
tend to produce reasonable and biologically mean-
ingful results, and allow for an easy visualization
of the relationships between the various genes or
conditions in the experiments.

The ease of visualizing the results has also led
to the extensive use of self-organizing maps
(SOM) for gene expression clustering (73,75).
The SOM method starts with a geometry of “nodes”
of a simple topology (e.g., grid and ring) and a dis-
tance function on the nodes. Initially, the nodes
are mapped randomly into the gene expression
space, in which the ith coordinate represents the
expression level in the ith condition. At each
following iteration, a data point P (i.e., a gene
expression profile) is randomly selected and the
data point P will attract nodes to itself. The near-
est node Np to P will be identified and moved the
most, and other nodes will be adjusted depending

on their distances to the nearest node Np toward
the data point P. The advantages of using SOMs
are its structured approach, which makes visual-
ization very easy. However, the method requires
the user to specify the number of clusters as well
as the grid topology, including the dimensions of the
grid and the number of clusters in each dimension.

From the successes obtained in using K-means
and group-average-based clustering algorithms,
as well as other similar algorithms (76,77), it appears
that the clusters in the context of gene expression
datasets are globular in nature. This should not be
surprising as researchers are often interested in
obtaining clusters whose genes have similar expres-
sion patterns/profiles. Such a requirement automati-
cally lends itself to globular clusters, in which the
pairwise similarity between most object pairs is
quite high. However, as the dimensionality of
these datasets continue to increase (primarily by
increasing the number of conditions that are ana-
lyzed), requiring consistency across the entire set
of conditions will be unrealistic. Many new algo-
rithms have been proposed recently to tackle the
problem of clustering gene expression data with
high dimensionality, among which global dimen-
sion reduction (78,79) and finding clusters in sub-
spaces (i.e., subsets of dimensions) (80–84) are
two widely used techniques.

The basic idea of global dimension reduction
is to compress the entire gene/condition matrix to
represent genes by vectors in a compressed space
of low dimensionality, such that the biologically
interesting results can be extracted (78,79,85).
Horn and Axel (78) and Ding et al. (79) proposed
to use singular value decomposition (SVD) to
compress the data and then apply traditional clus-
tering algorithms (such as k-means). They also
showed that their algorithms can find meaningful
clusters on cancer cells (86), leukemia dataset
(87), and yeast cell cycle dataset (88). Similar
ideas have been applied to other high-dimensional
clustering problems, such as text clustering, and
shown to be effective as well (89).

Finding clusters in subspaces tackle this prob-
lem differently by redefining the problem of
clustering as finding clusters whose internal simi-
larities become apparent in subspaces or clusters
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that preserve certain expression patterns among
the dimensions in subspaces (80–84). The vari-
ous algorithms differ from one another in how
they model the desired clusters, the optimization
algorithm and clustering algorithm that generate
the desired clusters, and whether the algorithms
allow genes that belong to more than one cluster
(i.e., overlapping clusters). Cheng and Church
(81) assume each expression value in the matrix
is the addition of three components: the back-
ground level, the row effect, and the column effect.
Thus, they use minimum mean squared residue
as the objective function to find clusters in sub-
spaces that have small deviations with respect to
the rows in the cluster, the columns in the sub-
space, and the background defined by the cluster.
The Plaid model (82) assumes the entire matrix is
a sum of overlapping layers (i.e., clusters) and the
global background, to better handle the overlap-
ping clusters. Thus, the goal is to estimate the
mean expression values of each layer and the
probabilities of each entry in the matrix belong-
ing to each layer, such that the calculated expres-
sion values are most consistent with the observed
ones. Both algorithms (81,82) use a greedy algo-
rithm to find clusters one by one. In particular,
after finding one cluster, the entries that partici-
pate in the cluster are adjusted to eliminate the
effect of the cluster. The algorithm will iterate
several times until K (a user-defined parameter)
clusters are found or no significant cluster can be
found further. The two algorithms just mentioned
treated rows and columns equally during the clus-
tering process and investigators often refer to this
type of clustering algorithms as biclustering (81–
83). Another type of clustering algorithms find-
ing clusters in subspaces (projected clustering
algorithms; 80,84) treats the objects to be clus-
tered and the relevant dimensions differently and
often finds disjointed clusters. PROCLUS (80) is
one of such algorithms. The whole clustering pro-
cess is similar to the k-medoids method, which
assigns each object to its closest cluster medoid.
However, when calculating the distance between
the object to its medoid, PROCLUS selects the
most conserved l (a user-defined parameter) dimen-
sions for each medoid based on its nearest neigh-

bors and only uses this set of dimensions to calcu-
late the distances. The HARP algorithm is an
agglomerative projected clustering algorithm
(84). It evaluates the quality of a cluster as the
sum of the relevance index of each dimension,
where the relevance index is defined by compar-
ing the local variance (i.e., among the objects in
the cluster) with the global variance of that dimen-
sion. The dimensions that have high relevance
index values are the “signature” dimensions for
identifying the members in the cluster. It will
merge the two clusters that can result in a cluster
with the highest relevance index sum. In the end,
each cluster can be represented as the dimensions
with highest relevance index values.

Finally, the clustering algorithms we dis-
cussed so far treat the dimensions (i.e., condi-
tions) independently. In other words, if we
permute the dimensions arbitrarily, the cluster-
ing result will remain the same. Sometimes, espe-
cially when the conditions are time points, methods
that can capture the temporal relationships between
the conditions are more suitable (90–93). Filkov
et al. (90) showed that using correlation coeffi-
cient as the similarity measure can be misleading
in time-series analysis and proposed to compare
two genes by looking at the degree of agreement
of slopes of the gene expression levels between
two time points. Liu and Muller (91) applied the
dynamic time-warping technique on gene expres-
sion data. There are also model-based clustering
algorithms for temporal datasets, which assume
each cluster as a stochastic model (92,93). Because
the model-based clustering algorithm itself is a
complicated topic and not the focus of this article,
we will not discuss these algorithms in detail and
readers can refer to ref. 94 for a comprehensive
review.

6. Cluto: A Clustering Toolkit
We now turn our focus on providing a brief

overview of CLUTO (release 2.1), a software pack-
age for clustering low- and high-dimensional
datasets and for analyzing the characteristics of
the various clusters, which has been developed by
our group and is available at http://www.cs.umn.
edu/~karypis/cluto. CLUTO has been developed as

AU: neces-
sary to spell
out HARP? If
so, please
provide.
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a general purpose clustering toolkit. CLUTO’s dis-
tribution consists of both stand-alone programs
(vcluster and scluster) for clustering and analyz-
ing these clusters, as well as a library through
which an application program can access directly
the various clustering and analysis algorithms imple-
mented in CLUTO. WCLUTO (95), a web-enabled
version of the stand-alone application Cluto,
designed to apply clustering methods to genomic
information, is also available at http://cluto.
ccgb.umn.edu. To date, CLUTO has been success-
fully used to cluster datasets arising in many
diverse application areas including information
retrieval, commercial datasets, scientific datasets,
and biological applications.

CLUTO implements three different classes of
clustering algorithms that can operate either directly
in the object’s feature space or in the object’s simi-
larity space. The clustering algorithms provided
by Cluto are based on the partitional, agglomer-
ative, and graph-partitioning paradigms. CLUTO’s
partitional and agglomerative algorithms are able
to find clusters that are primarily globular,
whereas its graph-partitioning and some of its
agglomerative algorithms are capable of finding
transitive clusters.

A key feature in most of CLUTO’s clustering
algorithms is that they treat the clustering prob-
lem as an optimization process that seeks to maxi-
mize or minimize a particular clustering criterion
function, defined either globally or locally over
the entire clustering solution space. CLUTO pro-
vides a total of seven different criterion functions
that have been shown to produce high-quality
clusters in low- and high-dimensional datasets.
The equations of these criterion functions are
shown in Table 1, and they were derived and ana-
lyzed (30,96). In addition to these criterion func-
tions, CLUTO provides some of the more traditional
local criteria (e.g., single-link, complete-link, and
group-average) that can be used in the context of
agglomerative clustering.

An important aspect of partitional-based crite-
rion-driven clustering algorithms is the method
used to optimize this criterion function. CLUTO

uses a randomized incremental optimization algo-

rithm that is greedy in nature, has low computa-
tional requirements, and produces high-quality
clustering solutions (30). Moreover, CLUTO’s
graph-partitioning-based clustering algorithms
use high-quality and efficient multilevel graph-
partitioning algorithms derived from the METIS
and hMETIS graph- and hypergraph-partitioning
algorithms (97,98). Moreover, CLUTO’s algo-
rithms have been optimized for operating on very
large datasets, in terms of the number of objects,
as well as in terms of the number of dimensions.
This is especially true for CLUTO’s algorithms for
partitional clustering. These algorithms can
quickly cluster datasets with several tens of thou-
sands objects and several thousands of dimen-
sions. Moreover, because most high-dimensional
datasets are very sparse, CLUTO directly takes into
account this scarcity and requires memory that is
roughly linear on the input size.

In the rest of this section we present a short
description of CLUTO’s stand-alone programs fol-
lowed by some illustrative examples of how it can
be used for clustering biological datasets.

6.1. Usage Overview
The vcluster and scluster programs are used to

cluster a collection of objects into a predeter-
mined number of clusters k. The vcluster program
treats each object as a vector in a high-dimen-
sional space, and it computes the clustering solu-
tion using one of five different approaches. Four
of these approaches are partitional in nature,
whereas the fifth approach is agglomerative. On the
other hand, the scluster program operates on the
similarity space between the objects but can
compute the overall clustering solution using the
same set of five different approaches.

Both the vcluster and scluster programs are
invoked by providing two required parameters
on the command line along with a number of
optional parameters. Their overall calling sequence
is as follows:

vcluster [optional parameters] MatrixFile
NClusters
scluster [optional parameters] GraphFile
NClusters

Table 1
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MatrixFile is the name of the file that stores
the n objects that need to be clustered. In vcluster,
each of these objects is considered to be a vector
in an m-dimensional space. The collection of
these objects is treated as an n × m matrix, whose
rows correspond to the objects, and whose col-
umns correspond to the dimensions of the feature
space. Similarly, GraphFile is the name of the file
that stores the adjacency matrix of the similarity
graph between the n objects to be clustered. The
second argument for both programs, NClusters,
is the number of clusters that is desired.

Figure 1 shows the output of vcluster for clus-
tering a matrix into 10 clusters. From this figure
we see that vcluster initially prints information
about the matrix, such as its name, the number of
rows (#Rows), the number of columns (#Col-
umns), and the number of non-zeros in the matrix
(#NonZeros). Next, it prints information about the
values of the various options that it used to com-

pute the clustering, and the number of desired
clusters (#Clusters). Once it computes the clus-
tering solution, it displays information regarding
the quality of the overall clustering solution, as
well as the quality of each cluster, using a variety
of internal quality measures. These measures
include the average pairwise similarity between
each object of the cluster and its standard devia-
tion (ISim and ISdev), and the average similarity
between the objects of each cluster to the objects
in the other clusters and their standard deviation
(ESim and ESdev). Finally, vcluster reports the
time taken by the various phases of the program.

6.2. Summary of Biological Relevant
Features

The behavior of vcluster and scluster can be
controlled by specifying more than 30 different
optional parameters. These parameters can be
broadly categorized into three groups. The first

Fig 1
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group controls various aspects of the clustering
algorithm, the second group controls the type of
analysis and reporting that is performed on the
computed clusters, and the third set controls the
visualization of the clusters. Some of the most
important parameters are shown in Table 2, and
are described in the context of clustering biologi-
cal datasets in the rest of this section.

6.3. Clustering Algorithms
The -clmethod parameter controls the type of

algorithms to be used for clustering. The first
two methods (i.e., “rb” and “direct”) follow the
partitional paradigm described in Subheading
2.1. The difference between them is the method
they use to compute the k-way clustering solution.
In the case of “rb”, the k-way clustering solution

is computed by a sequence of repeated bisections,
whereas in the case of “direct”, the entire k-way
clustering solution is computed at one step.
CLUTO’s traditional agglomerative algorithm is
implemented by the “agglo” option, whereas the
“graph” option implements a graph-partitioning-
based clustering algorithm, which is well-suited
for finding transitive clusters. The method used
to define the similarity between the objects is
specified by the -sim parameter, and supports the
cosine (“cos”), correlation coefficient (“corr”),
and a Euclidean distance-derived similarity
(“dist”). The clustering criterion function that is
used by the partitional and agglomerative algo-
rithms is controlled by the -crfun parameter. The
first seven criterion functions (described in Table 1)
are used by both partitional and agglomerative,

Fig. 1. Output of vcluster for matrix sports.mat and a 10-way clustering.

Table 2
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whereas the last five (single-link, weighted-single-
link, complete-link, weighted-complete-link, and
group-average) are only applicable to agglomerative
clustering.

A key feature of CLUTO is that allows you to
combine partitional and agglomerative clustering
approaches. This is done by the -agglofrom param-
eter in the following way. The desired k-way clus-
tering solution is computed by first clustering the
dataset into clusters (m > k), and then uses an
agglomerative algorithm to group some of these
clusters to form the final k-way clustering solu-
tion. The number of clusters m is the value sup-
plied to -agglofrom. This approach was motivated
by the two-phase clustering approach of the
CHAMELEON algorithm (20), and was designed to
allow the user to compute a clustering solution that
uses a different clustering criterion function for
the partitioning phase from that used for the agglom-
eration phase. An application of such an approach
is to allow the clustering algorithm to find non-
globular clusters. In this case, the partitional clus-
tering solution can be computed using a criterion
function that favors globular clusters (e.g., “i2”),
and then combine these clusters using a single-
link approach (e.g., “wslink”) to find nonglobular
but well-connected clusters.

6.4. Building Tree for Large Datasets

Hierarchical agglomerative trees are used exten-
sively in life sciences as they provide an intuitive
way to organize and visualize the clustering results.
However, there are two limitations with such trees.
First, hierarchical agglomerative clustering may
not be the optimal way to cluster data in which
there is no biological reason to suggest that the
objects are related with each other in a tree-
fashion. Second, hierarchical agglomerative
clustering algorithms have high computational
and memory requirements, making them imprac-
tical for datasets with more than a few thousand
objects.

To address these problems CLUTO provides the
-fulltree option that can be used to produce a
complete tree using a hybrid of partitional and
agglomerative approaches. In particular, when
-fulltree is specified, CLUTO builds a complete
hierarchical tree that preserves the clustering
solution that was computed. In this hierarchical
clustering solution, the objects of each cluster
form a subtree, and the different subtrees are
merged to get an all-inclusive cluster at the end.
Furthermore, the individual trees are combined in
a meaningful way, therefore to accurately repre-
sent the similarities within each tree.

Table 2
Key Parameters of Cluto’s Clustering Algorithms

Parameter Values Function

-clmethod rb, direct, agglo, graph Clustering Method
-sim cos, corr, dist Similarity measures
-crfun I1, I2, E1, G1, G’1, H1, H2, slink, wslink, clink, Criterion Function

wclink, upgma
-agglofrom (int) Where to start agglomeration
-fulltree Builds a tree within each cluster
-showfeatures Display cluster’s feature signature
-showtree Build a tree on top of clusters
-labeltree Provide key features for each tree
node
-plottree (filename) Plots the agglomerative tree
-plotmatrix (filename) Plots the input matrices
-plotclusters (filename) Plots cluster–cluster matrix
-clustercolumn Simultaneously cluster the features
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Figure 2 shows the trees produced on a sample
gene expression dataset. The first tree was obtained
using the agglomerative clustering algorithm,
whereas the second tree was obtained using the
repeated-bisecting method in which the -fulltree was
specified.

6.5. Analyzing the Clusters
In addition to the core clustering algorithms,

CLUTO provides tools to analyze each of the clus-
ters and identify what are the features that best
describe and discriminate each one of the clus-
ters. To some extent, these analysis methods try
to identify the dense subspaces in which each
cluster is formed. This is accomplished by the
-showfeatures and -labeltree parameters.

Figure 3 shows the output produced by vcluster
when -showfeatures was specified for a dataset
consisting of protein sequences and the 5mers that
they contain. Looking at this figure, we can see
that the set of descriptive and discriminating fea-
tures are displayed right after the table that pro-
vides statistics for the various clusters. For each
cluster, vcluster displays three lines of informa-
tion. The first line contains some basic statistics
for each cluster corresponding to the cluster-id
(cid), number of objects in each cluster (Size), the
average pairwise similarity between the cluster’s
objects (ISim), and the average pairwise similar-
ity to the rest of the objects (ESim). The second
line contains the five most descriptive features,
whereas the third line contains the five most dis-
criminating features. The features in these lists are
sorted in decreasing descriptive or discriminating
order.

Right next to each feature, vcluster displays a
number that in the case of the descriptive features
is the percentage of the within-cluster similar-
ity that this particular feature can explain. For
example, for the 0th cluster, the 5mer “GTSMA”
explains 58.5% of the average similarity between
the objects of the 0th cluster. A similar quantity is
displayed for each one of the discriminating fea-
tures, and is the percentage of the dissimilarity
between the cluster and the rest of the objects that
this feature can explain. In general there is a large
overlap between descriptive and discriminating
features, with the only difference being that the

Fig 3

Fig. 2. (A) The clustering solution produced by
the agglomerative method. (B) The clustering solu-
tion produced by the repeated-bisecting method and
–fulltree.

Fig 2
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Fig. 3. Output of vcluster for matrix sports.mat and a 10-way clustering that shows the descriptive and dis-
criminating features of each cluster.
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Fig. 4. Various visualizations generated by the-plotmatrix (a) and -plotcluster (b) parameter.
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percentages associated with the discriminating
features are typically smaller than the correspond-
ing percentages of the descriptive features. This
is because some of the descriptive features of a
cluster may also be present in a small fraction of
the objects that do not belong to the cluster.

6.6. Visualizing the Clusters
CLUTO’s programs can produce a number of

visualizations that can be used to see the rela-
tionships between the clusters, objects, and fea-
tures. You have already seen one of them in Fig. 2
that was produced by the -plotmatrix parameter.
The same parameter can be used to visualize
sparse high-dimensional datasets. This is illus-
trated in Fig. 4A for the protein dataset used ear-
lier. As we can see from that plot, vcluster shows
the rows of the input matrix reordered in such a
way so that the rows assigned to each one of the
10 clusters are numbered consecutively. The col-
umns of the displayed matrix are selected to be
the union of the most descriptive and discriminat-
ing features of each cluster, and are ordered accord-
ing to the tree produced by an agglomerative
clustering of the columns. Also, at the top of each
column, the label of each feature is shown. Each
non-zero positive element of the matrix is dis-
played by a different shade of red. Entries that
are bright red correspond to large values and the
brightness of the entries decreases as their value
decrease. Also note that in this visualization both
the rows and columns have been reordered using
a hierarchical tree.

Finally, Fig. 4B shows the type of visualiza-
tion that can be produced when -plotcluster is
specified for a sparse matrix. This plot shows the
clustering solution shown at Fig. 4A by replacing
the set of rows in each cluster by a single row that
corresponds to the centroid vector of the cluster.
The -plotcluster option is particularly useful for
displaying very large datasets, as the number of rows
in the plot is only equal to the number of clusters.

7. Future Research Directions in Clustering
Despite the huge body of research in cluster

analysis, there are a number of open problems and
research opportunities, especially in the context

of clustering datasets arising in life sciences.
Existing clustering algorithms for sequence and
structure datasets operate on the object’s similar-
ity space. As discussed in Subheading 2.2., such
algorithms are quite limiting as they cannot scale
to very large datasets, cannot be used to find clus-
ters that have conserved features (e.g., sequence
or structural motifs), and cannot be used to pro-
vide a description as to why a set of objects was
assigned to the same cluster that is native to the
object’s features. The only way to overcome these
shortcomings is to develop algorithms that oper-
ate directly on either the sequences or structures.
Thus, opportunities for future research can be
broadly categorized into three groups: (1) devel-
opment of computationally efficient and scalable
algorithms for large sequence and structure
datasets; (2) development of clustering algo-
rithms for sequence and structure datasets that
operate directly on the object’s native representa-
tion; and (3) development of clustering algo-
rithms that can provide concise explanations on
the characteristics of the objects that were assigned
to each cluster.
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